Customizing DDL

In the preceding sections we’ve discussed a variety of schema constructs including Table, ForeignKeyConstraint, CheckConstraint, and Sequence. Throughout, we’ve relied upon the create() and create_all() methods of Table and MetaData in order to issue data definition language (DDL) for all constructs. When issued, a pre-determined order of operations is invoked, and DDL to create each table is created unconditionally including all constraints and other objects associated with it. For more complex scenarios where database-specific DDL is required, SQLAlchemy offers two techniques which can be used to add any DDL based on any condition, either accompanying the standard generation of tables or by itself.

Custom DDL

Custom DDL phrases are most easily achieved using the DDL construct. This construct works like all the other DDL elements except it accepts a string which is the text to be emitted:

event.listen(
    metadata,
    "after_create",
    DDL("ALTER TABLE users ADD CONSTRAINT "
        "cst_user_name_length "
        " CHECK (length(user_name) >= 8)")
)

A more comprehensive method of creating libraries of DDL constructs is to use custom compilation - see Custom SQL Constructs and Compilation Extension for details.

Controlling DDL Sequences

The DDL construct introduced previously also has the ability to be invoked conditionally based on inspection of the database. This feature is available using the DDLElement.execute_if() method. For example, if we wanted to create a trigger but only on the PostgreSQL backend, we could invoke this as:

mytable = Table(
    'mytable', metadata,
    Column('id', Integer, primary_key=True),
    Column('data', String(50))
)

func = DDL(
    "CREATE FUNCTION my_func() "
    "RETURNS TRIGGER AS $$ "
    "BEGIN "
    "NEW.data := 'ins'; "
    "RETURN NEW; "
    "END; $$ LANGUAGE PLPGSQL"
)

trigger = DDL(
    "CREATE TRIGGER dt_ins BEFORE INSERT ON mytable "
    "FOR EACH ROW EXECUTE PROCEDURE my_func();"
)

event.listen(
    mytable,
    'after_create',
    func.execute_if(dialect='postgresql')
)

event.listen(
    mytable,
    'after_create',
    trigger.execute_if(dialect='postgresql')
)

The DDLElement.execute_if.dialect keyword also accepts a tuple of string dialect names:

event.listen(
    mytable,
    "after_create",
    trigger.execute_if(dialect=('postgresql', 'mysql'))
)
event.listen(
    mytable,
    "before_drop",
    trigger.execute_if(dialect=('postgresql', 'mysql'))
)

The DDLElement.execute_if() method can also work against a callable function that will receive the database connection in use. In the example below, we use this to conditionally create a CHECK constraint, first looking within the PostgreSQL catalogs to see if it exists:

def should_create(ddl, target, connection, **kw):
    row = connection.execute(
        "select conname from pg_constraint where conname='%s'" %
        ddl.element.name).scalar()
    return not bool(row)

def should_drop(ddl, target, connection, **kw):
    return not should_create(ddl, target, connection, **kw)

event.listen(
    users,
    "after_create",
    DDL(
        "ALTER TABLE users ADD CONSTRAINT "
        "cst_user_name_length CHECK (length(user_name) >= 8)"
    ).execute_if(callable_=should_create)
)
event.listen(
    users,
    "before_drop",
    DDL(
        "ALTER TABLE users DROP CONSTRAINT cst_user_name_length"
    ).execute_if(callable_=should_drop)
)

sqlusers.create(engine)

sqlusers.drop(engine)

Using the built-in DDLElement Classes

The sqlalchemy.schema package contains SQL expression constructs that provide DDL expressions. For example, to produce a CREATE TABLE statement:

from sqlalchemy.schema import CreateTable
with engine.connect() as conn:
sql    conn.execute(CreateTable(mytable))

Above, the CreateTable construct works like any other expression construct (such as select(), table.insert(), etc.). All of SQLAlchemy’s DDL oriented constructs are subclasses of the DDLElement base class; this is the base of all the objects corresponding to CREATE and DROP as well as ALTER, not only in SQLAlchemy but in Alembic Migrations as well. A full reference of available constructs is in DDL Expression Constructs API.

User-defined DDL constructs may also be created as subclasses of DDLElement itself. The documentation in Custom SQL Constructs and Compilation Extension has several examples of this.

The event-driven DDL system described in the previous section Controlling DDL Sequences is available with other DDLElement objects as well. However, when dealing with the built-in constructs such as CreateIndex, CreateSequence, etc, the event system is of limited use, as methods like Table.create() and MetaData.create_all() will invoke these constructs unconditionally. In a future SQLAlchemy release, the DDL event system including conditional execution will taken into account for built-in constructs that currently invoke in all cases.

We can illustrate an event-driven example with the AddConstraint and DropConstraint constructs, as the event-driven system will work for CHECK and UNIQUE constraints, using these as we did in our previous example of DDLElement.execute_if():

def should_create(ddl, target, connection, **kw):
    row = connection.execute(
        "select conname from pg_constraint where conname='%s'" %
        ddl.element.name).scalar()
    return not bool(row)

def should_drop(ddl, target, connection, **kw):
    return not should_create(ddl, target, connection, **kw)

event.listen(
    users,
    "after_create",
    AddConstraint(constraint).execute_if(callable_=should_create)
)
event.listen(
    users,
    "before_drop",
    DropConstraint(constraint).execute_if(callable_=should_drop)
)

sqlusers.create(engine)

sqlusers.drop(engine)

While the above example is against the built-in AddConstraint and DropConstraint objects, the main usefulness of DDL events for now remains focused on the use of the DDL construct itself, as well as with user-defined subclasses of DDLElement that aren’t already part of the MetaData.create_all(), Table.create(), and corresponding “drop” processes.

DDL Expression Constructs API

Object Name Description

_CreateDropBase

Base class for DDL constructs that represent CREATE and DROP or equivalents.

AddConstraint

Represent an ALTER TABLE ADD CONSTRAINT statement.

CreateColumn

Represent a Column as rendered in a CREATE TABLE statement, via the CreateTable construct.

CreateIndex

Represent a CREATE INDEX statement.

CreateSchema

Represent a CREATE SCHEMA statement.

CreateSequence

Represent a CREATE SEQUENCE statement.

CreateTable

Represent a CREATE TABLE statement.

DDL

A literal DDL statement.

DDLElement

Base class for DDL expression constructs.

DropConstraint

Represent an ALTER TABLE DROP CONSTRAINT statement.

DropIndex

Represent a DROP INDEX statement.

DropSchema

Represent a DROP SCHEMA statement.

DropSequence

Represent a DROP SEQUENCE statement.

DropTable

Represent a DROP TABLE statement.

sort_tables(tables[, skip_fn, extra_dependencies])

Sort a collection of Table objects based on dependency.

sort_tables_and_constraints(tables[, filter_fn, extra_dependencies, _warn_for_cycles])

Sort a collection of Table / ForeignKeyConstraint objects.

function sqlalchemy.schema.sort_tables(tables, skip_fn=None, extra_dependencies=None)

Sort a collection of Table objects based on dependency.

This is a dependency-ordered sort which will emit Table objects such that they will follow their dependent Table objects. Tables are dependent on another based on the presence of ForeignKeyConstraint objects as well as explicit dependencies added by Table.add_is_dependent_on().

Warning

The sort_tables() function cannot by itself accommodate automatic resolution of dependency cycles between tables, which are usually caused by mutually dependent foreign key constraints. When these cycles are detected, the foreign keys of these tables are omitted from consideration in the sort. A warning is emitted when this condition occurs, which will be an exception raise in a future release. Tables which are not part of the cycle will still be returned in dependency order.

To resolve these cycles, the ForeignKeyConstraint.use_alter parameter may be applied to those constraints which create a cycle. Alternatively, the sort_tables_and_constraints() function will automatically return foreign key constraints in a separate collection when cycles are detected so that they may be applied to a schema separately.

Changed in version 1.3.17: - a warning is emitted when sort_tables() cannot perform a proper sort due to cyclical dependencies. This will be an exception in a future release. Additionally, the sort will continue to return other tables not involved in the cycle in dependency order which was not the case previously.

Parameters:
  • tables – a sequence of Table objects.

  • skip_fn – optional callable which will be passed a ForeignKey object; if it returns True, this constraint will not be considered as a dependency. Note this is different from the same parameter in sort_tables_and_constraints(), which is instead passed the owning ForeignKeyConstraint object.

  • extra_dependencies – a sequence of 2-tuples of tables which will also be considered as dependent on each other.

See also

sort_tables_and_constraints()

MetaData.sorted_tables - uses this function to sort

function sqlalchemy.schema.sort_tables_and_constraints(tables, filter_fn=None, extra_dependencies=None, _warn_for_cycles=False)

Sort a collection of Table / ForeignKeyConstraint objects.

This is a dependency-ordered sort which will emit tuples of (Table, [ForeignKeyConstraint, ...]) such that each Table follows its dependent Table objects. Remaining ForeignKeyConstraint objects that are separate due to dependency rules not satisfied by the sort are emitted afterwards as (None, [ForeignKeyConstraint ...]).

Tables are dependent on another based on the presence of ForeignKeyConstraint objects, explicit dependencies added by Table.add_is_dependent_on(), as well as dependencies stated here using the sort_tables_and_constraints.skip_fn and/or sort_tables_and_constraints.extra_dependencies parameters.

Parameters:
  • tables – a sequence of Table objects.

  • filter_fn – optional callable which will be passed a ForeignKeyConstraint object, and returns a value based on whether this constraint should definitely be included or excluded as an inline constraint, or neither. If it returns False, the constraint will definitely be included as a dependency that cannot be subject to ALTER; if True, it will only be included as an ALTER result at the end. Returning None means the constraint is included in the table-based result unless it is detected as part of a dependency cycle.

  • extra_dependencies – a sequence of 2-tuples of tables which will also be considered as dependent on each other.

New in version 1.0.0.

See also

sort_tables()

class sqlalchemy.schema.DDLElement

Base class for DDL expression constructs.

This class is the base for the general purpose DDL class, as well as the various create/drop clause constructs such as CreateTable, DropTable, AddConstraint, etc.

DDLElement integrates closely with SQLAlchemy events, introduced in Events. An instance of one is itself an event receiving callable:

event.listen(
    users,
    'after_create',
    AddConstraint(constraint).execute_if(dialect='postgresql')
)

Class signature

class sqlalchemy.schema.DDLElement (sqlalchemy.sql.expression.Executable, sqlalchemy.schema._DDLCompiles)

method sqlalchemy.schema.DDLElement.__call__(target, bind, **kw)

Execute the DDL as a ddl_listener.

method sqlalchemy.schema.DDLElement.against(target)

Return a copy of this DDL against a specific schema item.

attribute sqlalchemy.schema.DDLElement.bind
attribute sqlalchemy.schema.DDLElement.callable_ = None
attribute sqlalchemy.schema.DDLElement.dialect = None
method sqlalchemy.schema.DDLElement.execute(bind=None, target=None)

Execute this DDL immediately.

Executes the DDL statement in isolation using the supplied Connectable or Connectable assigned to the .bind property, if not supplied. If the DDL has a conditional on criteria, it will be invoked with None as the event.

Parameters:
  • bind – Optional, an Engine or Connection. If not supplied, a valid Connectable must be present in the .bind property.

  • target – Optional, defaults to None. The target SchemaItem for the execute call. Will be passed to the on callable if any, and may also provide string expansion data for the statement. See execute_at for more information.

method sqlalchemy.schema.DDLElement.execute_at(event_name, target)

Link execution of this DDL to the DDL lifecycle of a SchemaItem.

Deprecated since version 0.7: The DDLElement.execute_at() method is deprecated and will be removed in a future release. Please use the DDLEvents listener interface in conjunction with the DDLElement.execute_if() method.

Links this DDLElement to a Table or MetaData instance, executing it when that schema item is created or dropped. The DDL statement will be executed using the same Connection and transactional context as the Table create/drop itself. The .bind property of this statement is ignored.

Parameters:
  • event – One of the events defined in the schema item’s .ddl_events; e.g. ‘before-create’, ‘after-create’, ‘before-drop’ or ‘after-drop’

  • target – The Table or MetaData instance for which this DDLElement will be associated with.

A DDLElement instance can be linked to any number of schema items.

execute_at builds on the append_ddl_listener interface of MetaData and Table objects.

Caveat: Creating or dropping a Table in isolation will also trigger any DDL set to execute_at that Table’s MetaData. This may change in a future release.

method sqlalchemy.schema.DDLElement.execute_if(dialect=None, callable_=None, state=None)

Return a callable that will execute this DDLElement conditionally.

Used to provide a wrapper for event listening:

event.listen(
            metadata,
            'before_create',
            DDL("my_ddl").execute_if(dialect='postgresql')
        )
Parameters:
  • dialect

    May be a string or tuple of strings. If a string, it will be compared to the name of the executing database dialect:

    DDL('something').execute_if(dialect='postgresql')

    If a tuple, specifies multiple dialect names:

    DDL('something').execute_if(dialect=('postgresql', 'mysql'))

  • callable_

    A callable, which will be invoked with four positional arguments as well as optional keyword arguments:

    ddl:

    This DDL element.

    target:

    The Table or MetaData object which is the target of this event. May be None if the DDL is executed explicitly.

    bind:

    The Connection being used for DDL execution

    tables:

    Optional keyword argument - a list of Table objects which are to be created/ dropped within a MetaData.create_all() or drop_all() method call.

    state:

    Optional keyword argument - will be the state argument passed to this function.

    checkfirst:

    Keyword argument, will be True if the ‘checkfirst’ flag was set during the call to create(), create_all(), drop(), drop_all().

    If the callable returns a True value, the DDL statement will be executed.

  • state – any value which will be passed to the callable_ as the state keyword argument.

See also

DDLEvents

Events

attribute sqlalchemy.schema.DDLElement.on = None
attribute sqlalchemy.schema.DDLElement.target = None
class sqlalchemy.schema.DDL(statement, on=None, context=None, bind=None)

A literal DDL statement.

Specifies literal SQL DDL to be executed by the database. DDL objects function as DDL event listeners, and can be subscribed to those events listed in DDLEvents, using either Table or MetaData objects as targets. Basic templating support allows a single DDL instance to handle repetitive tasks for multiple tables.

Examples:

from sqlalchemy import event, DDL

tbl = Table('users', metadata, Column('uid', Integer))
event.listen(tbl, 'before_create', DDL('DROP TRIGGER users_trigger'))

spow = DDL('ALTER TABLE %(table)s SET secretpowers TRUE')
event.listen(tbl, 'after_create', spow.execute_if(dialect='somedb'))

drop_spow = DDL('ALTER TABLE users SET secretpowers FALSE')
connection.execute(drop_spow)

When operating on Table events, the following statement string substitutions are available:

%(table)s  - the Table name, with any required quoting applied
%(schema)s - the schema name, with any required quoting applied
%(fullname)s - the Table name including schema, quoted if needed

The DDL’s “context”, if any, will be combined with the standard substitutions noted above. Keys present in the context will override the standard substitutions.

Members

__init__()

method sqlalchemy.schema.DDL.__init__(statement, on=None, context=None, bind=None)

Create a DDL statement.

Parameters:
  • statement

    A string or unicode string to be executed. Statements will be processed with Python’s string formatting operator. See the context argument and the execute_at method.

    A literal ‘%’ in a statement must be escaped as ‘%%’.

    SQL bind parameters are not available in DDL statements.

  • on

    Deprecated since version 0.7: The DDL.on parameter is deprecated and will be removed in a future release. Please refer to DDLElement.execute_if().

    Optional filtering criteria. May be a string, tuple or a callable predicate. If a string, it will be compared to the name of the executing database dialect:

    DDL('something', on='postgresql')

    If a tuple, specifies multiple dialect names:

    DDL('something', on=('postgresql', 'mysql'))

    If a callable, it will be invoked with four positional arguments as well as optional keyword arguments:

    ddl:

    This DDL element.

    event:

    The name of the event that has triggered this DDL, such as ‘after-create’ Will be None if the DDL is executed explicitly.

    target:

    The Table or MetaData object which is the target of this event. May be None if the DDL is executed explicitly.

    connection:

    The Connection being used for DDL execution

    tables:

    Optional keyword argument - a list of Table objects which are to be created/ dropped within a MetaData.create_all() or drop_all() method call.

    If the callable returns a true value, the DDL statement will be executed.

  • context – Optional dictionary, defaults to None. These values will be available for use in string substitutions on the DDL statement.

  • bind – Optional. A Connectable, used by default when execute() is invoked without a bind argument.

See also

DDLEvents

Events

class sqlalchemy.schema._CreateDropBase(element, on=None, bind=None)

Base class for DDL constructs that represent CREATE and DROP or equivalents.

The common theme of _CreateDropBase is a single element attribute which refers to the element to be created or dropped.

Class signature

class sqlalchemy.schema._CreateDropBase (sqlalchemy.schema.DDLElement)

class sqlalchemy.schema.CreateTable(element, on=None, bind=None, include_foreign_key_constraints=None)

Represent a CREATE TABLE statement.

Members

__init__()

Class signature

class sqlalchemy.schema.CreateTable (sqlalchemy.schema._CreateDropBase)

method sqlalchemy.schema.CreateTable.__init__(element, on=None, bind=None, include_foreign_key_constraints=None)

Create a CreateTable construct.

Parameters:
  • element – a Table that’s the subject of the CREATE

  • on – See the description for ‘on’ in DDL.

  • bind – See the description for ‘bind’ in DDL.

  • include_foreign_key_constraints

    optional sequence of ForeignKeyConstraint objects that will be included inline within the CREATE construct; if omitted, all foreign key constraints that do not specify use_alter=True are included.

    New in version 1.0.0.

class sqlalchemy.schema.DropTable(element, on=None, bind=None)

Represent a DROP TABLE statement.

Class signature

class sqlalchemy.schema.DropTable (sqlalchemy.schema._CreateDropBase)

class sqlalchemy.schema.CreateColumn(element)

Represent a Column as rendered in a CREATE TABLE statement, via the CreateTable construct.

This is provided to support custom column DDL within the generation of CREATE TABLE statements, by using the compiler extension documented in Custom SQL Constructs and Compilation Extension to extend CreateColumn.

Typical integration is to examine the incoming Column object, and to redirect compilation if a particular flag or condition is found:

from sqlalchemy import schema
from sqlalchemy.ext.compiler import compiles

@compiles(schema.CreateColumn)
def compile(element, compiler, **kw):
    column = element.element

    if "special" not in column.info:
        return compiler.visit_create_column(element, **kw)

    text = "%s SPECIAL DIRECTIVE %s" % (
            column.name,
            compiler.type_compiler.process(column.type)
        )
    default = compiler.get_column_default_string(column)
    if default is not None:
        text += " DEFAULT " + default

    if not column.nullable:
        text += " NOT NULL"

    if column.constraints:
        text += " ".join(
                    compiler.process(const)
                    for const in column.constraints)
    return text

The above construct can be applied to a Table as follows:

from sqlalchemy import Table, Metadata, Column, Integer, String
from sqlalchemy import schema

metadata = MetaData()

table = Table('mytable', MetaData(),
        Column('x', Integer, info={"special":True}, primary_key=True),
        Column('y', String(50)),
        Column('z', String(20), info={"special":True})
    )

metadata.create_all(conn)

Above, the directives we’ve added to the Column.info collection will be detected by our custom compilation scheme:

CREATE TABLE mytable (
        x SPECIAL DIRECTIVE INTEGER NOT NULL,
        y VARCHAR(50),
        z SPECIAL DIRECTIVE VARCHAR(20),
    PRIMARY KEY (x)
)

The CreateColumn construct can also be used to skip certain columns when producing a CREATE TABLE. This is accomplished by creating a compilation rule that conditionally returns None. This is essentially how to produce the same effect as using the system=True argument on Column, which marks a column as an implicitly-present “system” column.

For example, suppose we wish to produce a Table which skips rendering of the PostgreSQL xmin column against the PostgreSQL backend, but on other backends does render it, in anticipation of a triggered rule. A conditional compilation rule could skip this name only on PostgreSQL:

from sqlalchemy.schema import CreateColumn

@compiles(CreateColumn, "postgresql")
def skip_xmin(element, compiler, **kw):
    if element.element.name == 'xmin':
        return None
    else:
        return compiler.visit_create_column(element, **kw)


my_table = Table('mytable', metadata,
            Column('id', Integer, primary_key=True),
            Column('xmin', Integer)
        )

Above, a CreateTable construct will generate a CREATE TABLE which only includes the id column in the string; the xmin column will be omitted, but only against the PostgreSQL backend.

Class signature

class sqlalchemy.schema.CreateColumn (sqlalchemy.schema._DDLCompiles)

class sqlalchemy.schema.CreateSequence(element, on=None, bind=None)

Represent a CREATE SEQUENCE statement.

Class signature

class sqlalchemy.schema.CreateSequence (sqlalchemy.schema._CreateDropBase)

class sqlalchemy.schema.DropSequence(element, on=None, bind=None)

Represent a DROP SEQUENCE statement.

Class signature

class sqlalchemy.schema.DropSequence (sqlalchemy.schema._CreateDropBase)

class sqlalchemy.schema.CreateIndex(element, on=None, bind=None)

Represent a CREATE INDEX statement.

Class signature

class sqlalchemy.schema.CreateIndex (sqlalchemy.schema._CreateDropBase)

class sqlalchemy.schema.DropIndex(element, on=None, bind=None)

Represent a DROP INDEX statement.

Class signature

class sqlalchemy.schema.DropIndex (sqlalchemy.schema._CreateDropBase)

class sqlalchemy.schema.AddConstraint(element, *args, **kw)

Represent an ALTER TABLE ADD CONSTRAINT statement.

Class signature

class sqlalchemy.schema.AddConstraint (sqlalchemy.schema._CreateDropBase)

class sqlalchemy.schema.DropConstraint(element, cascade=False, **kw)

Represent an ALTER TABLE DROP CONSTRAINT statement.

Class signature

class sqlalchemy.schema.DropConstraint (sqlalchemy.schema._CreateDropBase)

class sqlalchemy.schema.CreateSchema(name, quote=None, **kw)

Represent a CREATE SCHEMA statement.

The argument here is the string name of the schema.

Members

__init__()

Class signature

class sqlalchemy.schema.CreateSchema (sqlalchemy.schema._CreateDropBase)

method sqlalchemy.schema.CreateSchema.__init__(name, quote=None, **kw)

Create a new CreateSchema construct.

class sqlalchemy.schema.DropSchema(name, quote=None, cascade=False, **kw)

Represent a DROP SCHEMA statement.

The argument here is the string name of the schema.

Members

__init__()

Class signature

class sqlalchemy.schema.DropSchema (sqlalchemy.schema._CreateDropBase)

method sqlalchemy.schema.DropSchema.__init__(name, quote=None, cascade=False, **kw)

Create a new DropSchema construct.